Causal signals between codon bias, mRNA structure, and the efficiency of translation and elongation

نویسندگان

  • Cristina Pop
  • Silvi Rouskin
  • Nicholas T Ingolia
  • Lu Han
  • Eric M Phizicky
  • Jonathan S Weissman
  • Daphne Koller
چکیده

Ribosome profiling data report on the distribution of translating ribosomes, at steady-state, with codon-level resolution. We present a robust method to extract codon translation rates and protein synthesis rates from these data, and identify causal features associated with elongation and translation efficiency in physiological conditions in yeast. We show that neither elongation rate nor translational efficiency is improved by experimental manipulation of the abundance or body sequence of the rare AGG tRNA. Deletion of three of the four copies of the heavily used ACA tRNA shows a modest efficiency decrease that could be explained by other rate-reducing signals at gene start. This suggests that correlation between codon bias and efficiency arises as selection for codons to utilize translation machinery efficiently in highly translated genes. We also show a correlation between efficiency and RNA structure calculated both computationally and from recent structure probing data, as well as the Kozak initiation motif, which may comprise a mechanism to regulate initiation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deciphering the rules by which dynamics of mRNA secondary structure affect translation efficiency in Saccharomyces cerevisiae

Messenger RNA (mRNA) secondary structure decreases the elongation rate, as ribosomes must unwind every structure they encounter during translation. Therefore, the strength of mRNA secondary structure is assumed to be reduced in highly translated mRNAs. However, previous studies in vitro reported a positive correlation between mRNA folding strength and protein abundance. The counterintuitive fin...

متن کامل

Modeling translation elongation dynamics by deep learning reveals new insights into the landscape of ribosome stalling

Translation elongation plays a central role in multiple aspects of protein biogenesis, e.g., differential expression, cotranslational folding and secretion. However, our current understanding on the regulatory mechanisms underlying translation elongation dynamics and the functional roles of ribosome stalling in protein synthesis still remains largely limited. Here, we present a deep learning-ba...

متن کامل

A Major Controversy in Codon-Anticodon Adaptation Resolved by a New Codon Usage Index

Two alternative hypotheses attribute different benefits to codon-anticodon adaptation. The first assumes that protein production is rate limited by both initiation and elongation and that codon-anticodon adaptation would result in higher elongation efficiency and more efficient and accurate protein production, especially for highly expressed genes. The second claims that protein production is r...

متن کامل

Nonsense-mediated decay targets have multiple sequence-related features that can inhibit translation

Nonsense-mediated mRNA decay (NMD) is a surveillance system that eliminates transcripts with premature termination codons. In this study, we show that mRNAs targeted by NMD are also suppressed at the translational level. The low translational efficiency (TE) is a consequence of multiple features acting in concert, including low translation initiation rate, mediated by 5' secondary structure and...

متن کامل

Trade-offs between tRNA abundance and mRNA secondary structure support smoothing of translation elongation rate

Translation of protein from mRNA is a complex multi-step process that occurs at a non-uniform rate. Variability in ribosome speed along an mRNA enables refinement of the proteome and plays a critical role in protein biogenesis. Detailed single protein studies have found both tRNA abundance and mRNA secondary structure as key modulators of translation elongation rate, but recent genome-wide ribo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2014